A Magnet



Magnet

  1. A Magnet Attracts 3 Types Of Metal
  2. A Magnet School
  3. A Magnetic Field

The most common magnetic fields come from negatively charged particles called electrons. Normally, in any sample of matter, the magnetic fields of electrons point in different directions, canceling. Find a Magnet Organization. Organizations that initiate the Journey to Magnet Excellence or achieve Magnet designation gain the advantage of using one of the official logos (shown below) in their marketing and promotion. The Magnet Recognition Program ® and Journey to Magnet Excellence ® certification marks are legally trademarked symbols. Neodymium Rare-Earth Magnet Discs (6 per Pack) Use Super Magnets 0.47 in. Neodymium Rare-Earth Use Super Magnets 0.47 in. Neodymium Rare-Earth Magnet Discs (6 per Pack) for a wide variety of temporary fastening jobs. These cylinder-shaped magnets are made of neodymium and offer up to 4 lb.

Article
Please select which sections you would like to print:
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.

Our editors will review what you’ve submitted and determine whether to revise the article.

Join Britannica's Publishing Partner Program and our community of experts to gain a global audience for your work! The Editors of Encyclopaedia Britannica
Encyclopaedia Britannica's editors oversee subject areas in which they have extensive knowledge, whether from years of experience gained by working on that content or via study for an advanced degree..

Magnet, any material capable of attracting iron and producing a magnetic field outside itself. By the end of the 19th century all the known elements and many compounds had been tested for magnetism, and all were found to have some magnetic property. The most common was the property of diamagnetism, the name given to materials exhibiting a weak repulsion by both poles of a magnet. Some materials, such as chromium, showed paramagnetism, being capable of weak induced magnetization when brought near a magnet. This magnetization disappears when the magnet is removed. Only three elements, iron, nickel, and cobalt, showed the property of ferromagnetism (i.e., the capability of remaining permanently magnetized).

Magnetization process

The quantities now used in characterizing magnetization were defined and named by William Thomson (Lord Kelvin) in 1850. The symbol B denotes the magnitude of magnetic flux density inside a magnetized body, and the symbol H denotes the magnitude of magnetizing force, or magnetic field, producing it. The two are represented by the equation B = μH, in which the Greek letter mu, μ, symbolizes the permeability of the material and is a measure of the intensity of magnetization that can be produced in it by a given magnetic field. The modern units of the International Standard (SI) system for B are teslas (T) or webers per square metre (Wb/m2) and for H are amperes per metre (A/m). The units were formerly called, respectively, gauss and oersted. The units of μ are henrys per metre.

All ferromagnetic materials exhibit the phenomenon of hysteresis, a lag in response to changing forces based on energy losses resulting from internal friction. If B is measured for various values of H and the results are plotted in graphic form, the result is a loop of the type shown in the accompanying figure, called a hysteresis loop. The name describes the situation in which the path followed by the values of B while H is increasing differs from that followed as H is decreasing. With the aid of this diagram, the characteristics needed to describe the performance of a material to be used as a magnet can be defined. Bs is the saturation flux density and is a measure of how strongly the material can be magnetized. Br is the remanent flux density and is the residual, permanent magnetization left after the magnetizing field is removed; this latter is obviously a measure of quality for a permanent magnet. It is usually measured in webers per square metre. In order to demagnetize the specimen from its remanent state, it is necessary to apply a reversed magnetizing field, opposing the magnetization in the specimen. The magnitude of field necessary to reduce the magnetization to zero is Hc, the coercive force, measured in amperes per metre. For a permanent magnet to retain its magnetization without loss over a long period of time, Hc should be as large as possible. The combination of large Br and large Hc will generally be found in a material with a large saturation flux density that requires a large field to magnetize it. Thus, permanent-magnet materials are often characterized by quoting the maximum value of the product of B and H, (BH)max, which the material can achieve. This product (BH)max is a measure of the minimum vol ume of permanent-magnet material required to produce a required flux density in a given gap and is sometimes referred to as the energy product.

It was suggested in 1907 that a ferromagnetic material is composed of a large number of small volumes called domains, each of which is magnetized to saturation. In 1931 the existence of such domains was first demonstrated by direct experiment. The ferromagnetic body as a whole appears unmagnetized when the directions of the individual domain magnetizations are distributed at random. Each domain is separated from its neighbours by a domain wall. In the wall region, the direction of magnetization turns from that of one domain to that of its neighbour. The process of magnetization, starting from a perfect unmagnetized state, comprises three stages: (1) Low magnetizing field. Reversible movements of the domain walls occur such that domains oriented in the general direction of the magnetizing field grow at the expense of those unfavourably oriented; the walls return to their original position on removal of the magnetizing field, and there is no remanent magnetization. (2) Medium magnetizing field. Larger movements of domain walls occur, many of which are irreversible, and the volume of favourably oriented domains is much increased. On removal of the field, all the walls do not return to their original positions, and there is a remanent magnetization. (3) High magnetizing field. Large movements of domain walls occur such that many are swept out of the specimen completely. The directions of magnetization in the remaining domains gradually rotate, as the field is increased, until the magnetization is everywhere parallel to the field and the material is magnetized to saturation. On removal of the field, domain walls reappear and the domain magnetizations may rotate away from the original field direction. The remanent magnetization has its maximum value.

Get a Britannica Premium subscription and gain access to exclusive content. Subscribe Now
Magnet

The values of Br, Hc, and (BH)max will depend on the ease with which domain walls can move through the material and domain magnetization can rotate. Discontinuities or imperfections in the material provide obstacles to domain wall movement. Thus, once the magnetizing field has driven the wall past an obstacle, the wall will not be able to return to its original position unless a reversed field is applied to drive it back again. The effect of these obstacles is, therefore, to increase the remanence. Conversely, in a pure, homogeneous material, in which there are few imperfections, it will be easy to magnetize the material to saturation with relatively low fields, and the remanent magnetization will be small.

Demagnetization and magnetic anisotropy. As far as domain rotation is concerned, there are two important factors to be considered, demagnetization and magnetic anisotropy (exhibition of different magnetic properties when measured along axes in different directions). The first of these concerns the shape of a magnetized specimen. Any magnet generates a magnetic field in the space surrounding it. The direction of the lines of force of this field, defined by the direction of the force exerted by the field on a (hypothetical) single magnetic north pole, is opposite to the direction of field used to magnetize it originally. Thus, every magnet exists in a self-generated field that has a direction such as to tend to demagnetize the specimen. This phenomenon is described by the demagnetizing factor. If the magnetic lines of force can be confined to the magnet and not allowed to escape into the surrounding medium, the demagnetizing effect will be absent. Thus a toroidal (ring-shaped) magnet, magnetized around its perimeter so that all the lines of force are closed loops within the material, will not try to demagnetize itself. For bar magnets, demagnetization can be minimized by keeping them in pairs, laid parallel with north and south poles adjacent and with a soft-iron keeper laid across each end.

The relevance of demagnetization to domain rotation arises from the fact that the demagnetizing field may be looked upon as a store of magnetic energy. Like all natural systems, the magnet, in the absence of constraints, will try to maintain its magnetization in a direction such as to minimize stored energy; i.e., to make the demagnetizing field as small as possible. To rotate the magnetization away from this minimum-energy position requires work to be done to provide the increase in energy stored in the increased demagnetizing field. Thus, if an attempt is made to rotate the magnetization of a domain away from its natural minimum-energy position, the rotation can be said to be hindered in the sense that work must be done by an applied field to promote the rotation against the demagnetizing forces. This phenomenon is often called shape anisotropy because it arises from the domain’s geometry which may, in turn, be determined by the overall shape of the specimen.

Similar minimum-energy considerations are involved in the second mechanism hindering domain rotation, namely magnetocrystalline anisotropy. It was first observed in 1847 that in crystals of magnetic material there appeared to exist preferred directions for the magnetization. This phenomenon has to do with the symmetry of the atomic arrangements in the crystal. For example, in iron, which has a cubic crystalline form, it is easier to magnetize the crystal along the directions of the edges of the cube than in any other direction. Thus the six cube-edge directions are easy directions of magnetization, and the magnetization of the crystal is termed anisotropic.

Magnetic anisotropy can also be induced by strain in a material. The magnetization tends to align itself in accordance with or perpendicular to the direction of the in-built strain. Some magnetic alloys also exhibit the phenomenon of induced magnetic anisotropy. If an external magnetic field is applied to the material while it is annealed at a high temperature, an easy direction for magnetization is found to be induced in a direction coinciding with that of the applied field.

Magnet

The above description explains why steel makes a better permanent magnet than does soft iron. The carbon in steel causes the precipitation of tiny crystallites of iron carbide in the iron that form what is called a second phase. The phase boundaries between the precipitate particles and the host iron form obstacles to domain wall movement, and thus the coercive force and remanence are raised compared with pure iron.

The best permanent magnet, however, would be one in which the domain walls were all locked permanently in position and the magnetizations of all the domains were aligned parallel to each other. This situation can be visualized as the result of assembling the magnet from a large number of particles having a high value of saturation magnetization, each of which is a single domain, each having a uniaxial anisotropy in the desired direction, and each aligned with its magnetization parallel to all the others.

Quick Facts

A Magnet Attracts 3 Types Of Metal

key people
related topics

How to Separate Strong Magnets

Neodymium magnets are strong. Really strong. If you have never handled neodymium magnets before, you will be surprised at their remarkable strength. They're not the ceramic magnets you find at craft stores.

Whether talking about relatively small magnets like 1/4' diameter D41 discs, or monstrously big block magnets like our BX8X8X8, separating these magnets can prove challenging to those without experience.

Here, we share some of our strategies and tips for separating strong neodymium magnets.

The Basic Idea

Neodymium magnets pull towards each other with a strong force. If you try pulling two magnets directly apart, you need quite a bit of force to pull them apart. To separate one magnet from another, you'll need to pull with a force equal to the listed Pull Force Case 1 number.

This can be difficult if the magnet is strong, or if there isn't much area to grab onto the magnet. Most methods of separating these magnets do two things:

  1. They provide more leverage and/or a better way to grip the magnets
  2. They move the magnets apart laterally (sideways), which requires less force

A Magnet School

Small Magnets

Small magnets can be separated by hand, usually without any mechanical aid. Magnets with listed Pull Force Case 1 values of about 5 lb or less fall into this category. The key is to slide one magnet off the stack with a lateral motion, as shown in the video of D42 magnets below.

The video for our B333 cubes is also instructive.

If you are having trouble, consider using the edge of a desk to help remove the top magnet off a stack, as shown in the video below of our D63 disc magnets.

Medium-Sized Magnets

Medium sized magnets might range from 10 to 50 lb in their listed pull force numbers. While they can be separated by hand, it can help to use some kind of leverage such as the edge of a table.

The DX04 video below shows that it's easier to separate two magnets when a small plastic spacer is kept between them. Once the spacer is removed, it is much more difficult to separate by hand. The video shows magnets separated using the edge of a desk and with our MAGS1 Magnet Splitter.

The RX038DCB-N52 is a stronger magnet, but we use the same techniques. Need for speed shift 2 unleashed mac os.

Be careful handling magnets in this strength range. It can be easy to pinch your skin when handling such magnets. Also consider wearing safety glasses with magnets this size. If allowed to collide, small chips can fly off the magnets.

Big Magnets

We offer a number of really big magnets that are, quite frankly, challenging to handle. Here we show our BX8X8X8 1.5' cube magnet being separated using our MAGS1 magnet splitter. With a spacer between them we can separate these magnets by hand, though I wouldn't recommend this without experience.

The method shown here using our magnet splitter is good instruction for magnets in the 1 to 2 inch size range. We offer our MAGS1 magnet splitter for sale on our website. For those who prefer to make their own, we even have an article posted about how to Build Your Own Magnet Separator Tool.

We have not yet posted videos for larger magnets. For 3' magnets, we usually separate them with more than one person involved to stay safe. Be careful out there!

WARNING: Neodymium Magnets are Brittle and Fragile!

A Magnetic Field

Neodymium magnets are made of a brittle material. Don't let the shiny nickel plating fool you -- these magnets are not as strong as steel. They are more like a brittle ceramic. If you let two magnets slam together, they can crack and break. This is true for magnets large and small. Even small D41 magnets can crack if you let them fly together.

The video below includes some high speed photography showing what happens when strong magnets collide.

More examples on the Video Summary Page

Looking for an example for how to handle your specific magnet? Many of our product pages include a video of that magnet under the 'Video' tab. For a list of magnets that include videos, check out our Video Summary Page. Don't see one you're looking for? Suggest our next magnet video!

Magnet